論文專著:
發(fā)表中英文學(xué)術(shù)論文100余篇。
發(fā)表英文論文:
Publications (* Corresponding author):
[107]Jinke Chang, Xiaopeng Li, Juan Shen, Jun Hu, Liangfan Wu,Xueyao Zhang, Jia Li*. Defects in the cell wall and its deposition caused by loss-of-function of three RLKs alter root hydrotropism in Arabidopsis thaliana.Nature Communications | (2024) 15:2648. https://doi.org/10.1038/s41467-024-46889-2 PDF
[106]Wei, Z., Zhang, H., Fang, M., Lin, S., Zhu, M., Li, Y., Jiang, L., Cui, T., Cui, Y., Kui, H., Peng, L., Gou, X., Li, J.* (2023) The Dof transcription factor COG1 is a key regulator of plant biomass by promoting photosynthesis and starch accumulation. Molecular Plant, DOI: https://doi.org/10.1016/j.molp.2023.09.011.
[105]Zhang, J., Chen, W., Li, X., Shi, H., Lv, M., He, L., Bai, W., Cheng, S., Chu, J., He, J., Gou, X., and Li, J.* (2023) Jasmonates regulate apical hook development by repressing brassinosteroid biosynthesis and signaling. Plant Physiology kiad399 doi: 10.1093/plphys/kiad399.
[104]Chen, C., He, G., Li, J., Perez-Hormaeche, J., Becker, T., Luo, M., Wallrad, L., Gao, J., Li, J., Pardo, J.M., Kudla, J.*, and Guo Y.* (2023) A salt stress-activated GSO1-SOS2-SOS1 module protects the Arabidopsis root stem cell niche by enhancing sodium ion extrusion. EMBO Journal 42(13), e113004.
[103]Liu, B., Feng, C., Fang, X., Ma, Z., Xiao, C., Zhang, S., Liu, Z., Sun, D., Shi, H., Ding, X., Qiu, C., Li, J., Luan, S., Li, L., and He, K.* (2023) The anion Channel SLAH3 interacts with potassium channels to regulate nitrogen-potassium homeostasis and membrane potential in Arabidopsis. Plant Cell 35(4), 1259-1280.
[102]Wang, J., Wang, G., Liu, W., Yang, H., Wang, C., Chen, W., Zhang, X., Tian, J., Yu, Y., Li, J., Xue, Y., Kong, Z.* (2023) Brassinosteroid signals cooperate with katanin-mediated microtubule severing to control stamen filament elongation. EMBO Journal 42(4), e111883.
[101]Li, M., Lv, M., Wang, X., Cai, Z., Yao, H., Zhang, D., Li, H., Zhu, M., Du, W., Wang, R., Wang, Z., Kui, H., Hou, S., Li, J., Yi, J., Gou, X.* (2023) The EPFL-Erf-SERK signaling controls integument development in Arabidopsis. New Phytologist 238(1), 186-201.
[100]Zhu, M., Tao, L., Zhang, J., Liu, R., Tian, H., Hu, C., Zhu, Y., Li, M., Wei, Z., Yi, J., Li, J., Gou, X.* (2022) The type-B response regulators ARR10, ARR12, and ARR18 specify the central cell in Arabidopsis. Plant Cell 34(12), 4714-4737.
[99]Shi, H., Li, X., Lv, M., Li, J.* (2022) BES1/BZR1 family transcription factors regulate plan development via brassinosteroid dependent and independent pathways. International Journal of Molecular Sciences 23(17), 10149.
[98]Li, X., Zhang, J., Shi, H., Li, B., and Li, J.* (2022) Rapid responses: Receptor-like kinases directly regulate the functions of membrane transport proteins in plants. Journal of Integrative Plant Biology 64(7), 1303-1309.
[97]Li, M., Liu, C., Hepworth, S.R., Ma, C., Li, H., Li, J., Wang, S-M, and Yin, H.* (2022) SAUR15 interaction with BRI1 activates plasma membrane H+-ATPase to promote organ development of Arabidopsis. Plant Physiology 189(4), 2454-2466.
[96]Wang, Y., Chen, W., Ou, Y., Zhu, Y., and Li, J.* (2022) Arabidopsis ROOT ELONGATION RECEPTOR KINASE negatively regulate root growth putatively via altering cell wall remodeling gene expression. Journal of Integrative Plant Biology 64(8), 1502-1513.
[95]Cao, J., Liang, Y., Yan, T., Wang, X., Zhou, H., Chen, C., Zhang, Y., Zhang, B., Zhang, S., Liao, J., Cheng, S., Chu, J., Huang, X., Xu, D., Li, J., Deng, X.W., Lin, F.* (2022) The photomorphogenic repressors BBX28 and BBX29 integrate light and brassinosteroid signaling to inhibit seedling development in Arabidopsis. Plant Cell 34(6), 2266-2285.
[94]Ou, Y., Tao, B., Wu, Y., Cai, Z., Li, H., Li, M., He, K., Gou, X., Li, J.* (2022) Essential roles of SERKs in the ROOT MERISTEM GROWTH FACTOR-mediated signaling pathway. Plant Physiology 189(1), 165-177.
[93]Wang, W., Hu, C., Li, X., Zhu, Y., Tao, L., Cui, Y., Deng, D., Fan, X., Zhang, H., Li, J., Gou, X.*, Yi, J.* (2022) Receptor-like cytoplasmic kinases PBL34/35/36 are required for CLE peptide-mediated signaling to maintain SAM and RAM homeostasis in Arabidopsis. Plant Cell 34(4), 1289-1307.
[92]Fang, Y., Chang, J., Shi, T., Luo, W., Ou, Y., Wan, D.*, Li, J.* (2021) Evolution of RGF/GLV/CLEL peptide hormones and their roles in land plant growth and regulation. International Journal of Molecular Sciences 22(24), 13372.
[91]Hu, C., Zhu, Y., Cui, Y., Zeng, L., Li, S., Meng, F., Huang, S., Wang, W., Kui, H., Yi, J., Li, J., Wan, D., Gou, X.* (2021) A CLE-BAM-CIK signaling module controls root protophloem differentiation in Arabidopsis. New Phytologist 233(1), 228-296.
[90]Zhang, H., Li, X., Wang, W., Li, H., Cui, Y., Zhu, Y., Kui, H., Yi, J., Li, J., Gou, X.* (2021) SERKs regulate embryoic cuticle integrity through the TWS-GSO1/2 singlaing pathway in Arabidopsis. New Phytologist 233(1), 313-328.
[89]Chang, J., Li, J.* (2022) Methods to Quantify Cell Division and Hormone Gradients During Root Tropisms. In: Blancaflor E.B. (eds) Plant Gravitropism. Methods in Molecular Biology, vol 2368. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1677-2_5
[88]Feng, Z., Shi, H., Lv, M., Ma, Y., Li, J.* (2021) Protein farnesylation negatively regulates brassinosteroid signaling via reducing BES1 stability in Arabidopsis thaliana. Journal of Integrative Plant Biology 63 (7), 1353-1366.
[87]Sun, D., Fang, X., Xiao, C., Ma, Z., Huang, X., Su, J., Li, J., Wang, J., Wang, S., Luan, S., He, K.* (2021) Kinase SnRK1.1 regulates nitrate channel SLAH3 engaged in nitrate-dependent alleviation of ammonium toxicity. Plant Physiology 186 (1), 731-749.
[86]Fang, X., Liu, B., Shao, Q., Huang, X., Li, J., Lun, S.*, and He, K.* (2021) AtPiezo plays an important role in root cap mechanotrasdiction. International Journal of Molecular Sciences 22, 467.
[85]Ou, Y., Kui, H., Li, J.* (2020) Receptor-like kinases in root development: current progress and future directions. Molecular Plant 14, 166-185.
[84]Chen, L., Zhao, M., Wu, Z., Chen, S., Rojo, E., Luo, J., Li, P., Zhao, L., Chen, Y., Deng, J., Cheng, B., He, K., Gou, X., Li, J., Hou, S.* (2020) RNA polymerase II associated proteins regulate stomatal development through directly interacting with the stomatal transcription factors in Arabidopsis thaliana. New Phytologist 230, 171-189.
[83]Wu, Y., Gao, Y., Zhan, Y., Kui, H., Liu, H., Yan, L., Kemmerling, B., Zhou, J-M., He, K.*, Li, J.* (2020) Loss of the common immune coreceptor BAK1 leads to NLR-dependent cell death. Proc. Natl. Acad. Sci. USA 117(43), 27044-27053.
[82]Wei, Z. and Li, J.* (2020) Regulation of Brassinosteroid homeostasis in higher plants. Frontiers in Plant Science 11, 583622.
[81]Lu, X., Shi, H., Ou, Y., Cui, Y., Chang, J., Peng, L., Gou, X., He, K., Li, J.* (2020) RGF1-RGI1, a peptide-receptor complex, regulates Arabidopsis root meristem development via a MPAK signaling cascade. Molecular Plant 13, 1594-1607.
[80]Yin, H., Li, M., Lv, M., Hepworth, S.R., Li, D., Ma, C., Li, J.*, Wang, S.* (2020) SAUR15 promotes lateral and adventitious roo development via activating H+-ATPase and auxin biosynthesis. Plant Physiology 184(2), 837-851.
[79]Liu, J., Li, J., Shan, L.* (2020) SERKs. Current Biology 30(7), R293-R294.
[78]Lv, M. and Li, J.* (2020) Molecular Mechanisms of Brassinosteroid-Mediated Responses to Changing Environments in Arabidopsis. International Journal of Molecular Sciences 21, 2737; doi:10.3390/ijms21082737
[77]Xun, Q., Wu, Y., Li, H., Chang, J., Ou, Y., He, K., Gou, X., Tax, F. E., Li, J.* (2020) Two receptor-like protein kinases, MUSTACHES and MUSTACHES-LIKE, regulate lateral root development in Arabidopsis thaliana, New Phytologist 227, 1157-1173.
[76]Gou, X. and Li, J.* (2020) Paired receptor and coreceptor kinases perceive extracellular signals to control plant development. Plant Physiology 182(4), 1667-1681.
[75]Li, J., Li, C. (2019) Seventy-year major research progress in plant hormones by Chinese scholars (in Chinese). Sci Sin Vitae 49, 1227-1281.
[74]Chang, J., Li, X., Fu, W., Wang, J., Yong, Y., Shi, H., Ding, Z., Kui, H., Gou, X., He, K., Li, J.* (2019) Asymmetric distribution of cytokinins determines root hydrotropism in Arabidopsis thaliana. Cell Research 29(12), 984-993.
[73]Chen, W., Lv, M., Wang, Y., Wang, P., Cui, Y., Li., M., Wang, R., Gou, X., Li., J.* (2019) BES1 is activated by EMS1-TPD1-SERK1/2-mediated signaling pathway to control tapetum development in Arabidopsis thaliana. Nature Communications 10, 4164.
[72]Zhou, Y., Xun, Q., Zhang, D., Lv, M., Ou, Y., and Li, J.* (2019) TCP transcription factors associate with PHYTOCHROME INTERACTING FACTOR 4 and CRYPTOCHROME 1 to regulate thermomorphogenesis in Arabidopsis thaliana. iScience 15, 600-610.
[71]Li, H., Cai, Z., Wang, X., Li, M., Cui, Y., Cui, N., Yang, F., Zhu, M., Zhao, J., Du, W., He, K., Yi, J., Tax, F.E., Hou, S., Li, J., Gou, X.* (2019) SERK receptor-like kinases control division patterns of vascular precursors and ground tissue stem cells during embryo development in Arabidopsis. Molecular Plant 12(7), 984-1002.
[70]Wu, Z.L., Chen, L., Yu, Q., Zhou, W.Q., Gou, X.P., Li, J., Hou, S.W.* (2019) Multiple transcriptional factors control stomata development in rice. New Phytologist 223(1), 220-232.
[69]Lv, M., Li, M., Chen, W., Wang, Y., Sun, C., Yin, H., He, K., and Li, J.* (2018) Thermal-enhanced bri1-301 instability reveals a plasma membrane protein quality control system in plants. Frontiers in Plant Science 9, 1620.
[68]Cui, Y., Hu, C., Zhu, Y., Cheng, K., Li, X., Wei, Z., Xue, L., Lin, F., Shi, H., Yi, J., Hou, S., He, K., Li, J., Gou, X.* (2018) CIK Receptor kinases determine cell fate specification during early anther development in Arabidopsis. Plant Cell 30, 2383-2401.
[67]Li, J. * (2018) Cell Signaling leads the way. Journal of Integrative Plant Biology 60, 743-744.
[66]Wei, Z. and Li, J.* (2018) Receptor-like protein kinases: key regulators controlling root hair development in Arabidopsis thaliana. Journal of Integrative Plant Biology 60, 841-850.
[65]Hu, C., Zhu, Y., Cui, Y., Cheng, K., Liang, W., Wei, Z., Zhu, M., Yin, H., Zeng, Li, Xiao, Y., Lv, M., Yi, J., Hou, S., He, K., Li, J., Gou, X.* (2018). A group of receptor kinases are essential for CLAVATA signaling to maintain stem cell homeostasis. Nature Plants 4, 205-211.
[64]An, Z., Liu, Y., Ou, Y., Li, J., Zhang, B., Sun, D., Sun, Y., Tang, W.* (2018) Regulation of the stability of RGF1 receptor by the ubiquitin-specific proteases UBP12/UBP13 is critical for root meristem maintenance. Proc. Natl. Acad. Sci. USA 115(5), 1123-1128.
[63]Zhou, Y., Zhang, D., An, J., Yin, H., Fang, S., Chu, J., Zhao, Y., and Li, J.* (2018) TCP transcription factors regulate shade avoidance syndrome via directly mediating the expression of both PHYTOCHROME INTERACTING FACTORs and auxin biosynthetic genes. Plant Physiology 176(2), 1850-1861.
[62]Cheng, X., Gou X., Yin, H., Mysore, K.S., Li, J.*, and Wen, J.* (2017) Functional characterization of brassinosteroid receptor MtBRI1 in Medicago truncatula. Scientific Reports 7: 9327.
[61]Ou, Y., and Li, J.* (2017) Three divergent approaches identified the same RGF1 receptors in Arabidopsis thaliana. Sci China Life Sci 60, 1040-1043.
[60]Sun, C., Yan, K., Han, J-T., Tao, L., Lv, M-H., Shi, T., He, Y-X., Wierzba, M., Tax, F.E., Li, J.* (2017) Scanning for new BRI1 receptor mutations via TILLING analysis. Plant Physiology 174, 1881-1896.
[59]Wei, Z., Yuan,T., Tarkowská,D., Kim,J., Nam,H.G.,Novák,O., He, K., Gou, X. and Li, J.* (2017) Brassinosteroid biosynthesis is modulated via a transcription factor cascade of COG1, PIF4 and PIF5. Plant Physiology 174, 1260-1273.
[58]Gao, Y., Wu, Y., Du, J., Zhan, Y., Sun, D., Zhao, J., Zhang, S., Li, J. and He, K.* (2017) Both light-induced SA accumulation and ETI mediators contribute to the cell death regulated by BAK1 and BKK1. Frontiers in Plant Science 8, 622.
[57]Chang, J.K., Li, J.* (2017) Plants use an atypical strategy to perceive strigolactones. Chin Bull Bot 52, 123−127.
[56]Sun, C., Li, J.* (2017) Biosynthesis, catabolism, and signal transduction of brassinosteroids. Plant Physiology Journal 53, 291-307.
[55]Wang, H., Wei, Z., Li, J., Wang, X. (2017) Brassinosteroids. In: Li, J., Li., C., and Smith, S.M. (eds) Hormone Metabolism and Signaling in Plants. Woodhead Publishing, Elsevier
[54]Wei, Z., Gou, X., Li, J.* (2016) Brassinosteroids. In: eLS. John Wiley & Sons, Ltd: Chichester. DOI:10.1002/9780470015902.a0020092.pub2
[53]Ou, Y., Lu, X., Zi, Q., Xun, Q., Zhang J., Wu, Y., Shi, H., Wei, Z., Zhao, B., Zhang, X., He, K., Gou, X., Li, C., Li, J.* (2016) RGF1 INSENSITIVE 1 to 5, a group of LRR receptor-like kinases, are essential for the perception of root meristem growth factor 1 in Arabidopsis thaliana. Cell Research, 26(6), 686-698.
[52]Chen, L., Guan, L., Qian, P., Xu, F., Wu, Z., Wu, Y., He, K., Gou, X., Li, J., and Hou, S.* (2016) NRPB3, the third largest subunit of RNA polymerase II, is essential for stomatal patterning and differentiation in Arabidopsis. Development 143, 1600-1611.
[51]Du, J., Gao, Y., Zan, Y., Zhang, S., Wu, Y., Xiao, Y., Zou, B., He, K., Gou, X., Li, G., Lin, H., Li, J.* (2016) Nucleocytoplasmic trafficking is essential for BAK1 and BKK1-mediated cell-death control. Plant Journal 85(4), 520-531.
[50]Zhang, J., Yuan, T., Duan, X., Wei, X., Shi, T., Li, J., Russell, S.D.*, Gou, X.* (2016) Cis-regulatory elements determine germline specificity and expression level of an isopentenyltransferase gene in sperm cells of Arabidopsis. Plant Physiology 170(3), 1524-1534.
[49]Yue, J., Qin, Q., Meng, S., Jin, H., Gou, X., Li, J., Hou, S.* (2016) TOPP4 regulates the stability of phytochrome interacting factor 5 during photomorphogenesis in Arabidopsis. Plant Physiology 170(3), 1381-1397.
[48]Zhao, B., Lv, M., Feng, Z., Campbell, T., Liscum, E., Li, J.* (2016) TWISTED DWARF 1 associates with BRASSINOSTEROID INSENSITIVE 1 to regulate early events of the brassinosteroid signaling pathway. Molecular Plant 9(4), 582-592.
[47]Wu, Y., Xun, Q., Guo, Y., Zhang, J., Cheng, K., Shi, T., He, K., Hou, S., Gou, X., Li, J.* (2016) Genome-wide expression pattern analyses of the Arabidopsis leucine-rich repeat receptor-like kinases. Molecular Plant 9(2), 289-300.
[46]Wei, Z. and Li, J.* (2016) Brassinosteroid regulates root growth, development, and symbiosis. Molecular Plant 9(1), 86-100.
[45]Wu, W., Wu Y., Gao, Y., Li, M., Yin, H., Lv, M., Zhao, J., Li, J., He, K.* (2015) Somatic embryogenesis receptor-like kinase 5 in the ecotype Landsberg erecta of Arabidopsis is a functional RD LRR-RLK in regulating brassinosteroid signaling and cell death control. Frontiers in Plant Science 6, 852.
[44]Shi, T., Dimitrov, I., Zhang, Y., Tax, F.E., Yi, J., Gou, X., Li, J.* (2015) Accelerated rates of protein evolution in barley grain and pistil biased genes might be legacy of domestification. Plant Molecular Biology 89(3), 253-261.
[43]Gao, Y., Zhang, D., and Li, J.* (2015) TCP1 moduates DWF4 expression via directly interacting with the GGNCCC motifs in the promoter region of DWF4 in Arabidopsis thaliana. Journal of Genetics & Genomics 42(7), 383-392.
[42]Guo, X., Qin, Q., Yan, J., Niu, Y., Huang, B., Guan, L., Li, Y., Ren, D.,Li, J., Hou, S.* (2015) TYPE-ONE PROTEIN PHOSPHATASE 4 regulates pavement cell interdigitation by modulating PIN-FORMED 1 polarity and trafficking in Arabidopsis. Plant Physiology 167 (3), 1058-1075.
[41]Qin, Q., Wang, W., Guo, X., Yue, J., Huang, Y., Xu, X., Li, J., Hou, S.* (2014) Arabidopsis DELLA Protein Degradation Is Controlled by a Type-One Protein Phosphatase, TOPP4. PLoS Genetics 10(7):e1004464.
[40]Yang, Z.R., Zhang, C.J., Yang, X.J., Kun, L.,Wu, Z.X., Zhang, X.Y., Zheng, W.,Xun, Q.Q., Liu, C.L., Lu, L.L., Yang, Z.E., Qian, Y.Y., Xu, Z.Z.,Li, C.F., Li,J.*, Li, F.G.* (2014) PAG1, a cotton brassinosteroid catabolism gene, modulates fiber elongation. New Phytologist 203, 437-448.
[39]Qin, Z.X., Zhang, X.R., Zhang, X., Xin, W., Li, J., Hu, Y.X.* (2014) The Arabidopsis transcription factor IIB-related protein BRP4is involved in the regulation of mitotic cell-cycle progression during male gametogenesis. Journal of Experimental Botany 65(9),2521-2531.
[38]He, K., Xu, S., Li, J.* (2013) BAK1 Directly Regulates Brassinosteroid Perception and BRI1 Activation. Journal of Integrative Plant Biology 55(12),1264-1270.
[37]Li, J.*, Tax, F.E. (2013) Receptor-Like Kinases: Key Regulators of Plant Development and Defense. Journal of Integrative Plant Biology 55(12),1184-1187.
[36]Ma, T., Wang, J., Zhou, G., Yue, Z., Hu, Q., Chen, Y., Liu, B., Qiu, Q., Wang, Z., Zhang, J., Wang, K., Jiang, D., Gou, C., Yu, L., Zhan, D., Zhou, R.., Luo, W., Ma, H., Yang, Y., Pan, S., Fang, D., Luo, Y., Wang, X., Wang, G., Wang, J., Wang, Q., Lu, X., Chen, Z., Liu, J., Lu, Y., Yin, Y., Yang, H., Abbott, R.J., Wu, Y., Wan, D., Li, J., Yin, T., Lascoux, M., Difazio, S.P., Tuskan, G.A., Wang, J., Liu, J.* (2013) Genomic insights into salt adaptation in a desert poplar. Nature Communications 4, 2797.
[35]Qian, P., Han, B., Forestier, E., Hu, Z., Gao, N., Lu, W., Schaller, H., Li, J., Hou, S.* (2013) Sterols are required for cell fate commitment and maintenance of the stomatal lineage in Arabidopsis. The Plant Journal 74, 1029-1044.
[34]Zhao, B. and Li, J.* (2012) Regulation of Brassinosteroid Biosynthesis and Inactivation. Journal of Integrative Plant Biology 54 (10), 746-759.
[33]Wen, J.*, Li, J., and Walker, J.C. (2012) Overexpression of a Serine Carboxypeptidase Increases Carpel Number and Seed Production in Arabidopsis thaliana. Food and Energy Security 1(1), 61-69.
[32]Du, J., Yin, H., Zhang, S., Wei, Z., Zhao, B., Zhang, J., Gou, X., Lin, H., and Li, J.* (2012) Somatice Embryogenesis Receptor Kinases Control Root Development Mainly via Brassinosteroid-Independent Actions in Arabidopsis thaliana. Journal of Integrative Plant Biology 54(6), 388-399.
[31]Gou, X. and Li, J.* (2012) Activation tagging. Methods in Molecular Biology 876, 117-133.
[30]Gou, X., Yin, H., He, K., Du, J., Yi, J., Xu, S., Lin, H., Clouse, S.D., Li, J.* (2012) Genetic Evidence for an Indispensable Role of Somatic Embryogenesis Receptor Kinases in Brassinosteroid Signaling. PLoS Genetics 8(1): e1002452.
[29]Li, J.*, Du, J., He, K., and Gou, X. (2012) Cell Death Control by Receptor Kinases in Arabidopsis thaliana. In, F.E. Tax and B. Kemmerling (editors) RECEPTOR-LIKE KINASES IN PLANTS: From Development to Defense. Springer. Volume 13, pp79-91.
[28]Wei, Z-Y and Li, J.* (2011) Receptor kinases mediated brassinosteroid signal transduction in plants. Chinese Bulletin of Life Sciences. 23 (11), 1106-1113.
[27]An, J., Guo, Z., Gou, X., Li, J.* (2011) TCP1 positively regulates the expression of DWF4 in Arabidopsis thaliana. Plant Signaling & Behavior, 6: 1117-1118.
[26]Li, J.* (2010) Multi-tasking of somatic embryogenesis receptor-like protein kinases. Current Opinion in Plant Biolology ,13: 509-514.
[25]Guo, Z., Fujioka, S., Blancaflor, E.B., Miao, S., Gou, X., and Li, J.* (2010) TCP1 modulates brassinosteroid biosynthesis by regulating the expression of the key biosynthetic gene DWARF4 in Arabidopsis thaliana. Plant Cell 22, 1161-1173.
[24]Yang, H., Gou, X., He, K., Xi, D., Du, J., Lin, H., Li, J.* (2010) Arabidopsis BAK1 and BKK1 confer reduced susceptibility to Turnip Crinkle Virus. European Journal of Plant Pathology, 127: 147-156.
[23]Gou, X., He, K., Yang, H., Yuan, T., Lin, H., Clouse, S.D., Li, J.* (2010) Genome-wide cloning and sequence analysis of leucine-rich repeat receptor-like protein kinase genes in Arabidopsis thaliana. BMC Genomics 11(1):19
[22]Li, D., Wang, M., Xu Y.Y., Luo, W., Liu, Z.H., Li, J., Chong, K.* (2009) Engineering OsBAK1 gene as a molecular tool to improve rice architecture for high yield. Plant Biotechnology Journal 7(8): 791-806.
[21]Wang, X., Kota, U., He, K., Blackburn, K., Li, J., Goshe, M.B., Huber, S.C., and Clouse, S.D.* (2008) Sequential transphosphorylation of the BRI1/BAK1 receptor kinase pair impacts early events in brassinosteroid signaling. Developmental Cell 15, 220-235.
[20]He, K., Gou, X., Powell, R.A., Yang, H., Yuan, T, Guo, Z., and Li, J.* (2008) Receptor-like protein kinases, BAK1 and BKK1, regulate a light-dependent cell-death control pathway. Plant Signaling & Behavior 3 (10), 813-815.
[19]Clouse, S.D.*, Goshe, M.B., Huber, S.C. and Li, J. (2008) Functional Analysis and Phosphorylation Site Mapping of Leucine-Rich Repeat Receptor-Like Kinases. In, GK Agrawal and R Rakwal (eds) Plant Proteomics: Technologies, Strategies and Applications. John Wiley & Sons, pp 469-484.
[18]Heese, A., Hann, D.R., Gimenez-ibanex, S., Jones, A., He, K., Li, J., Schroeder, J.I., Peck, S.C., Rathjen, J.P.* (2007) The receptor-like kinase SERK3/BAK1 is a central regulator of innate immunity in plants. Proc. Natl. Acad. Sci. USA 104, 12217-12222.
[17]He, K., Gou, X., Yuan, T., Lin, H., Asami, T., Yoshida, S., Russell, S.D., Li, J.* (2007) BAK1 and BKK1 regulate brassinosteroid-dependent growth and brassinosteroid-independent cell death pathways. Current Biology 17, 1109-1115.
[16]Yuan, T., Fujioka, S., Takatsuto, S., Matsumoto, S., Gou, X.,He, K., Russell, S.D., and Li, J.* (2007) BEN1, a gene encoding a dihydroflavonol 4-reductase (DFR)-like protein, regulates the levels of brassinosteroids in Arabidopsis thaliana. The Plant Journal 51 (2), 220–233.
[15]Li, J.* and Gou, X. (2007) Brassinosteroids. In: Encyclopedia of Life Sciences. John Wiley & Sons, Ltd: Chichester http://www.els.net/ [DOI: 10.1002/9780470015902.a0020092]
[14]Wang, L., Xu, Y.Y., Li, J.*, Powell, R.A., Xu, Z.H., and Chong, K.* (2007) Transgenic rice plants ectopically expressing AtBAK1 are semi-dwarfed and hypersensitive to 24-epibrassinolide. Journal of Plant Physiology 164(5), 655-664.
[13]Zhou, A. and Li, J.* (2005) Arabidopsis BRS1 is an active and secreted serine carboxypeptidase. Journal of Biological Chemistry 280 (42), 35554-35561.
[12]Xu, Y.Y., Wang, X.M., Li, J., Li, J.H., Wu, J.S., Walker, J.C., Xu, Z.H., Chong, K.* (2005) Activation of the WUS gene induces ectopic initiation of floral meristems on mature stem surface in Arabidopsis thaliana. Plant Molecular Biology 57 (6), 773-784.
[11]Wang, X.F., Goshe, M. B., Soderblom, E., Phinney, B.S., Kuchar, J., Li, J., Asami, T., Yoshida, S., Huber, S. C., Clouse, S. D.* (2005) Identification and functional analysis of in vivo phosphorylation sites of the Arabidopsis BRASSINOSTEROID-INSENSITIVE 1 receptor kinase. The Plant Cell 17(6), 1685-1703.
[10]Zhou, A., Wang, H., Walker, J.C., and Li, J.* (2004) BRL1, a leucine-rich repeat receptor-like protein kinase, is functionally redundant with BRI1 in regulating Arabidopsis brassinosteroid signaling. The Plant Journal 40, 399-409.
[9]Lee, G., Li, J., Walker, J.C. and Van Doren S.R.* (2003) 1H. 13C and 15N resonance assignments of the kinase interacting FHA domain of Arabidopsis thaliana kinase-associated protein phosphatase. Journal of Biomolecular NMR 25, 253-254.
[8]Li, J., Wen, J., Lease, K.A., Doke, J.T., Tax, F.E. and Walker, J.C.* (2002) BAK1, an Arabidopsis LRR receptor-like protein kinase, interacts with BRI1 and modulates brassinosteroid signaling. Cell 110, 213-222.
[7]Lease, K.A., Wen, J., Li, J., Doke, J.T., Liscum, E. and Walker, J.C.* (2001) A mutant Arabidopsis Heterotrimeric G protein b subunit affects leaf, flower and fruit development. The Plant Cell 13, 2631-2641.
[6]Li, J., Lease, K.A., Tax, F.E. and Walker, J.C.* (2001) BRS1, a serine carboxypeptidase, regulates BRI1 signaling in Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA 98, 5916-5921.
[5]Li, J., Lee, G., Van Doren, S.R. and Walker, J.C.* (2000) The FHA domain mediates phosphorylation-dependent protein-protein interactions. Journal of Cell Science 113, 4143-4149.
[4]Li, J., Smith, G.P. and Walker, J.C.* (1999) Kinase interaction domain of kinase-associated protein phosphatase, a phosphoprotein-binding domain. Proc. Natl. Acad. Sci. USA 96, 7821-7826.
[3]Lin, Q., Li, J., Smith, R.D. and Walker, J.C.* (1998) Molecular cloning and chromosomal mapping of type one serine/threonine protein phosphatases in Arabidopsis thaliana. Plant Molecular Biology 37, 471-481.
[2]Li, J., Hegeman, C.E., Hanlon, W.R., Lacy, G.H., Denbow, D.M. and Grabau, E.A.* (1997) Secretion of active recombinant phytase from soybean cell-suspension cultures. Plant Physiology 114, 1103-1111.
[1]Li, J. and Grabau, E.A.* (1996) Comparison of somatic embryogenesis and embryo conversion in commercial soybean cultivars. Plant Cell, Tissue Organ Cult. 44, 87-89.
發(fā)表中文論文:
[11]郭飛梅, 呂銘輝, 黎家. 油菜素甾醇的穩(wěn)態(tài)與信號轉(zhuǎn)導(dǎo)調(diào)控研究進展[J]. 植物生理學(xué)報, 2023, 59 (12): 2217-2240.
[10]黎家,李傳友.新中國成立70年來植物激素研究進展[J].中國科學(xué):生命科學(xué),2019,49(10):1227-1281.
[9]黎家.植物激素——植物學(xué)研究永恒的話題[J].生物技術(shù)通報,2018,34(07):5-6.
[8]高坤,常金科,黎家.植物根向水性反應(yīng)研究進展[J].植物學(xué)報,2018,53(02):154-163.
[7]衛(wèi)卓赟,黎家.SERKs,擬南芥中一組參與多條細胞信號傳導(dǎo)途徑的共受體[J].中國科學(xué):生命科學(xué),2017,47(08):789-797.
[6]黎家,侯歲穩(wěn).蘭州大學(xué)生命科學(xué)學(xué)院專輯簡介[J].中國科學(xué):生命科學(xué),2017,47(08):785-788.
[5]常金科,黎家.獨腳金內(nèi)酯信號感知揭示配體-受體作用新機制[J].植物學(xué)報,2017,52(02):123-127.
[4]孫超,黎家.油菜素甾醇類激素的生物合成、代謝及信號轉(zhuǎn)導(dǎo)[J].植物生理學(xué)報,2017,53(03):291-307.
[3]衛(wèi)卓赟,黎家.受體激酶介導(dǎo)的油菜素內(nèi)酯信號轉(zhuǎn)導(dǎo)途徑[J].生命科學(xué),2011,23(11):1106-1113.
[2]馬建忠,婁世慶,匡廷云,黎家,童哲,湯佩松.不同光質(zhì)對黍子(Panicum miliaceum)葉綠體光系統(tǒng)發(fā)育及psbA基因轉(zhuǎn)錄物穩(wěn)態(tài)含量的影響[J].遺傳學(xué)報,1997(05):464-470.
[1]曾福禮 ,楊成德 ,黎家 ,吳靖嘉 ,柳明珠. 強力土壤增墑改良劑(GS—84型)在農(nóng)業(yè)上應(yīng)用的探討[J]. 蘭州大學(xué)學(xué)報, 1985, (S1): 48-58+40-41.
發(fā)表會議論文:
[2]吳玉俊.黎家. 受體激酶BAK1是調(diào)節(jié)植物PTI和ETI的重要節(jié)點[C]. 中國作物學(xué)會、中國植物學(xué)會、中國植物生理與植物分子生物學(xué)學(xué)會、中國遺傳學(xué)會、中國細胞生物學(xué)學(xué)會.2018全國植物生物學(xué)大會論文集.中國作物學(xué)會、中國植物學(xué)會、中國植物生理與植物分子生物學(xué)學(xué)會、中國遺傳學(xué)會、中國細胞生物學(xué)學(xué)會:中國作物學(xué)會,2018:188.
[1]徐云遠.黎家. 內(nèi)源WUSCHEL基因的超表達誘導(dǎo)成熟莖表面異位啟動花芽[C]. 中國植物學(xué)會.中國植物學(xué)會七十周年年會論文摘要匯編(1933—2003).中國植物學(xué)會:中國植物學(xué)會,2003:424.